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1 Introduction 
 
 Space-Time Adaptive Processing (STAP) is a technique used to reject interference [1, 2], 
offering the potential to improve airborne radar performance in several adverse cases such as 
low-velocity target detection as well as that of weak targets obscured by sidelobe clutter. It is 
based on a filter that adaptively processes the radar data received from L different spatial 
channels (sub-arrays or elements of a phased array) and N pulses in the coherent processing 
interval. 
 In [3] the optimum linear processor which maximizes the output signal to clutter/interference 
plus noise power ratio is derived under the assumption of disturbance with known covariance 
matrix.  However, since the clutter/interference spectral properties are not known a priori and 
may also vary both in time and space, a structure which adaptively estimates the weights of the 
aforementioned filter has been proposed and assessed in [4].  It is based on a set of K secondary 
data collected from range gates spatially close to the one under test and sharing the same 
covariance.  Besides, in order to achieve an effective clutter/interference suppression, a large 
number of range cells (2NL for achieving an average performance within 3 dB of the optimal 
value) sharing the same covariance matrix is required.  This is an important limitation since in 
real environments the number of data in which the clutter is homogeneous (often referred to as 
sample support) might be very limited. 
 In order to circumvent this drawback several techniques have been proposed in the recent 
past.  They largely fall into four distinct classes: 
 
 1. Minimal sample support methods which include reduced-rank STAP [2], chapters 5,6,  
  and [9], multistage Wiener filtering techniques [5], joint-domain localized algorithms [6], 
  least squares space-time filters exploiting the property of finite correlation length [2],  
  chapter [7], principal components techniques [7], pre/post-Doppler STAP [1] based also  
  on a partial a-priori knowledge of the disturbance scenarios, methods exploiting   
  structural information1 about the disturbance covariance matrix [8, 9, 10,11,12], and,  
  finally, covariance tapers [7]. 
 2. Knowledge-aided STAP employing intelligent training, namely suitable techniques for a  
  careful selection of the secondary data [13], or knowledge-based criteria [14, 15], which  
  resort to a-priori information concerning the surrounding environment. 
 3. Higher-order methods which include non-linear filters [16, 17, 18] to suppress the clutter  
  ridge and approximation by first-order Taylor series of the non-stationarity. 
 4. Deterministic (single shot) techniques [19]. 
 
 In this paper we propose a knowledge-based approach for STAP which exploits the special 
structure of the clutter Power Spectral Density (PSD) [20].  Indeed it is well known that in the 
absence of Intrinsic Clutter Motion (ICM) and neglecting velocity misalignment the clutter ridge 
(namely the locus in the Doppler-angle domain where the clutter PSD is sensibly different from 
zero) is composed of a finite width line (Doppler unambiguous clutter) or of multiple finite width 
lines (Doppler ambiguous clutter).  We use at the design stage this a-priori information which 

                                                 
1 These methods are also known as parametric or model-based techniques. 
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for the case of integer clutter ridge slope β, as shown in Section 3, is equivalent to assuming the 
knowledge of the clutter covariance matrix subspace. 
 In order to synthesize the receivers we resort to the Generalized Likelihood Ratio Test 
(GLRT) and the two-step GLRT (2S-GLRT) criteria, and derive two new decision rules referred 
to as the Knowledge-Based GLRT (KB-GLRT) and the Knowledge-Based 2S- GLRT (KB-2S-
GLRT) respectively.  Actually, the quoted derivations refer to the case of integer β.  Hence, in 
order to deal with the most general framework of non-integer β, we develop two approximate 
versions of the aforementioned receivers and discuss the possible exploitation of further a-priori 
information concerning the clutter covariance subspace. 
 The paper is organized as follows.  In Section 2 we formulate the problem and in Section 3 
we provide some insights about the clutter covariance matrix.  In Sections 4 and 5 we devise the 
KB-GLRT and the KB-2S-GLRT respectively.  The performance of the new receivers is 
presented in Section 6 also in comparison with several previously devised STAP detectors.  
Section 7 is devoted to the generalization of the novel decision rules to the case of a non-integer 
clutter ridge slope.  Finally, conclusions are drawn in Section 8. 

2 Problem Foundation 
 
 Data are collected by a narrowband antenna array with L spatial channels which, for 
simplicity, we assume colinear, omnidirectional, and equally spaced with spacing d. Each 
channel receives N echoes corresponding to the returns of a coherent pulse train composed of N 
pulses with a pulse repetition time Tp.  Denote by xi, i = 1; : : : ;N, the L-dimensional column 
vector of the snapshots along the spatial channels and let 

with (.)T denoting the transpose operator. 
 Under the hypothesis H0, namely target absence, the vector r contains disturbance only, i.e. 

 
where d denotes the overall disturbance accounting for both clutter and thermal noise. 
 Under H1,  r contains also a target component, i.e. 

with α denoting the complex amplitude accounting for both the target as well as the channel 
propagation effects and p is the target space-time steering vector.  More precisely, the vector p of 
the returns from a target with normalized Doppler frequency ωtg  and spatial frequency θtg can be 
written as  
 

where ⊗ denotes the Kronecker product, 
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., xN\ (NL — dimensional) 

p = a(<jjtg) <8> b(9tg)        (NL - dimensional) 

b(9tg) = [1, exp(j27TÖtg),..., ejq>{j2ir0tg(L - l))]r       (L - dimensional), 



 

 
 In the sequel we assume that the disturbance vector d is a zero-mean complex circular 
Gaussian vector with covariance matrix 
 

where Rc denotes the clutter covariance matrix, σ2 the thermal noise level, and I is the identity 
matrix. 
 

3 On the Structure of the Clutter Covariance Matrix 
 
 According to [1], neglecting the ICM, the clutter covariance matrix can be written as 

where (.)† is the conjugate transpose operator, Nc denotes the number of clutter patches involved 
in the scattering mechanism, ϕi is a positive real number accounting for the power reflected by 
the i-th clutter patch, θi and ωi denote respectively the spatial frequency and the normalized 
Doppler frequency of the i-th clutter patch, and 

 
Moreover, since in the absence of velocity misalignment 

with υa the platform velocity, we can rewrite Rc as 

where υ(θi) = υ(θi, βθi).  In the sequel we suppose that β is an integer, so that the Brennan rule 
holds with equality [1], i.e. 

with r = (N-1) β+L, and develop an alternative expression for Rc.  To this end we first prove the 
following proposition. 
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a{ujtg) = [1, exp0"27rcjtfl),..., exp(j2iru>tg(N - 1))]T        (N - dimensional),       (6) 

with j = y/—l. 

Rc = V)i>i u(6i,(Ji) u\9Ub)i) 

u(eiycui) = a(u^)<g> b(9i) 

2v^.9i=zß0.       Vi = l,...,JVe 

Re = Y,il>iv(9i)v\9i) 

rank(Äc) = min (r, Nc) , 



 

 
with i ∈{1,…,Nc} and recast it as 

 
where ⎯zl = exp(j2π⎯θl), l=1, … ,r, and zi = exp(j2πθi). 
 Moreover, since the rank of V is invariant under permutation of its rows, rearrange them 
so that the distinct elements of each column occupy the top rows and the replicated entries 
occupy the bottom rows.  This procedure leads to the new matrix whose rank, due to the 
replicated rows, is at most r = (N - 1)β + L.   

Finally, since its first r columns are linearly independent, due to the assumption on the ⎯θi's, then 
rank(V) = rank(V1) = r and the (r + 1)-th column can be expressed as a linear combination of the 
first r. 
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Proposition 1: Denote by $i,..., 9r, r-distinct real values complying with the con- 

dition Öi e [0,1[, I = 1,..., r. Then V* € {1,..., Nc} 

r 

«(ft) = X>,i *($)        «M€C. (13) 

Proof: Consider the NL x (r + 1) matrix 

K= [*&),..., t>(3r), »(«,)] (14) 

r      i       ...       i             i      ] 
Zi                 ...                 ZT                            Zi 

zh     .'..    2*-1        zf-1 

a?      ...      ^          4 

■ 

V = 

„ß+L-l             ^           ^/3+L-!                 ^+L"1 

-{N~l)ß                         ~(N-l)ß               r(N-l)ß 

(7V-l)/3+L-l               _(7V-i)/3+i-i       (JV-1)/J+L-1 
. ^1                                    ^r                          *i 

.   (15) 

Vy = 

1                       ...                       1                            1 
2i                   ...                  Zr                      Zi 

A          ...          2*            z? 

y(N-l)ß+L-l                            -sAN-iifi+L-l       (N-l)ß+L-l 

repeated         rows 

(16) 



 

 Exploiting the result of the above proposition we can rewrite Rc as follows 

Finally, in matrix form, Rc can be compactly written as 
 

Rc = ASA† (20) 
 

Where ( ) ( )[ ]rvvA θθ ,...,1= , and S is a non-negative definite r × r hermitian matrix.  We stress 
the importance and originality of the representation (20) which, due to the result of Proposition 
1, is independent of the particular set ( )θ 1, …, ( )θ r chosen.  In other words, when β is an integer, 
the clutter subspace is known and coincides with the subspace spanned by the columns of A 
irrespective of the particular choice concerning ( )θ 1, …, ( )θ r. 
 

4.  Derivation of the KB-GLRT 
 
 This section is devoted to the derivation of the GLRT for the hypothesis testing problem of 
Section 2.  To this end, as in [20], we assume that a set of secondary data r1, …, rK (K ≥ NL), 
namely vectors from range cells surrounding the one being tested, free of useful signal 
components, and with the same spectral properties of r, is available.2  Then we consider the 
following GLRT decision rule 

where Θ0 is the set of unknown parameters under the hypothesis H0, Θ1 = Θ0 ∪ {α} is the set of 
unknown parameters under the hypothesis H1, f( r, r1, …, rK⎜Θ1, H1) and f( r, r1, …, rK⎜Θ0, H0) 
denote the probability density functions (pdf’s) of the data under the H1 and H0 hypotheses 

                                                 
2The secondary data are modeled as independent and identically distributed zero-mean complex Gaussian random 
vectors. 
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A - E* feoy v(eij) fa** v(ot)) (17) 

or equivalently as, 

J=l t=l i=l                                                             |=1 t=l 
(18) 

where (•)* is the complex conjugate operator and 

(19) 

(e0 = {s,(j2},    5>o 
r«>9> 

\ e1 = {a,S,a2},   S>0 
W 

the GLRT can be rewritten as 

maxa,S,** /( r> ri,.-., r^la.S.a2,^) #* 

max^/fr, n,..., rÄ|S,a2,2*o)     #Q 

(23) 



 

respectively.  Since 
 
Further developments require specifying the data pd’s under both hypotheses.  To this end we 

highlight that 
 
where det(⋅) and tr(⋅) denote respectively the determinant and the trace of a square matrix, while 

T1 and T0 are defined as 
 
The maximization of the denominator of (23) can be performed exploiting the result of [21].  

Precisely, the Maximum Likelihood (ML) estimator of R under the H0 hypothesis is given by 
where the procedure Proc (⋅) is defined in Appendix A. 
 
 It is now necessary to perform the maximization of the numerator.  To this end we observe 
that maximizing (24) over α, for known R, gives the following equation 

Moreover, maximizing (24) over R, for known α we get 

 which implicitly define the joint ML 

However, it is possible to define a recursive procedure, based on cyclic maximizations of 
(24), capable of increasing an initial value of the likelihood function.  Precisely let 

It follows that (27) and (28) are two sets of conditions
estimates of α and R.  Unfortunately, it seems that the values of α and R capable of jointly 
satisfying the two conditions cannot be expressed in an explicit form. 
 
 

( )tR̂ and ( )tα̂  
be the estimates of R and α at the t-th step of the recursion and evaluate. 

6 

f(r, r!,..., rK\a,S}o
2,H1) = 

f                 1                   -tv[{ASAi + a2/)"1^«)] )K+l 

\nNdet(ASÄ< + a2I)e                                              J 

(24) 

and 
f(r, n,..., r^^oH 

f                 1                   -tr^AUa2/)-1^])^1 

\ TT* det {ASA* + a2 if                                      J 

(25) 

< 

'                       if                                            K           il ri(a) = ^ T ;   ( r - «P)( 
r - ap)f + Yl r* rk A +A L                               fc=i         J 

-Ro.Mi- Proc(To) 

K= Proc(T1(a)) 



 

 

where argmaxχ (⋅) denotes the value of χ which maximizes the argument. 
 
 The recursion is such that the sequence of the values of the likelihood function, namely the 
sequence 

 
increases as t increases.  Precisely, the following statement holds true. 
 
 Proposition 2:  The sequence of the values of the likelihood function is increasing, namely: 

 namely 

 

1 K

Not only the likelihood sequence is increasing, but it is also convergent,

 Proof:  In order to prove equation (31) it is sufficient to observe that 

 Not only is the likelihood sequence increasing, but it is also convergent, namely 

In fact, given r, r , …, r , the likelihood function is upper-bounded. 

, 

 Starting from the above considerations we obtain the following recursive expression of the 
KB-GLRT 
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g(*+i) _ argmaxa/( r, r,,..., rK\a,R   ,H1)=          .. 
pt(BlV1P 

(29) 

and 

R       = argmaxß/( r, ru.. ., r^|a(t+1),B,i?1)= pw(r,(a»«))) (30) 

/(r)r1,...,r^|aW,S('),H1) 

/(r, n,..., r*|a», fiP.Ili) </(r, r,,..., r^a^,^1',^) (3!) 

/f *•»   •"!,.. ..rjrlS«,^,^)   < max/( r, ru...y rK\<x>R   ,i?ij 

= /(rfrif...lrJr|a<n^'),ft) 

< ngx/(r, n,..., r^la^^,«,^) 

— 

■ 

lim/ (r, n,..., r^a^ S^,^) <+00. 

/( »", ri,..., rK\RO,ML, H0)   HQ 



 

 
which taking the logarithm can be recast as 

he original threshold. 
 For its implementation only an initial estimate R is required.  To this end it is convenient to 
where G denotes a suitable modification of t

exploit the ML estimate of R evaluated from the secondary data, i.e. 

 
A summary of the complete algorithm for the evaluation of the KB-GLRT (34) is given below. 
 

1. Evaluate (35). 
2. For t=1, …, Nit compute ( )tα̂  ( )tR̂ . 
3. Perform the test (34). 
 

Finally ncerning the mathematical tractability of the problem for non-integer 
values 
 

-GLRT detector [22] exploiting the a-priori information 
alized Doppler and the spatial frequencies.  Otherwise 

d, imary data vector r assuming that the 
e detector is obtained substituting the 

nk

d 
upon the secondary data, in place of its exact value.  By doing so we come up with the following 
adaptive decision ru

, considerations co
of β are given in Section 7. 

5. erivation of the KB-2S-GLRT 
 

In this section we devise the 2S

D

 
about the coupling between the norm
state we first derive the GLRT based upon the pr
covariance matrix R is known.  Then a fully adaptiv
u nown matrix by its ML estimate based upon secondary data only. 
 
 Step 1.  For known R the GLRT based upon the primary data is the following decision rule 

 Step 2.  We can make detector (36) fully adaptive by plugging the ML estimate of R, base

le (KB-2S-GLRT) 

 
In Section 7 some considerations for an approximate implementation of the receiver for the case 
of a non-integer clutter ridge slope are provided. 
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I det (.RO.ML) 

fi»-£=P«»c(±|>»ri). 



 

 

6. Performance Assessment 
 
 This section is devoted to the performance assess
GLRT also in comparison with 

ment of the KB-GLRT and of the KB-2S-

 clutter covariance matrix, i.e., 

etween Doppler and spatial frequency), i.e. 
 

 
• the optimum receiver (for targets with uniformly distributed phase) which assumes 

perfect knowledge of the

 
• classical Kelly’s receiver and the Adaptive Matched Filter (AMF) which,  in spite of the 

new detectors, do not exploit the special structure of the clutter PSD (the coupling 
b

is the secondary data sample covariance matrix. 
 To this end we resort to Monte Carlo simulation based on 

faP
100  independent trials.  Moreover, 

 order to limit the computational burden we set  = 10-2.  We also assume L = 4, N = 6, θtg= 
d identically distributed clutter patches.  The 

and is chosen equal to 30 dB.  Finally, simulation results have shown that N  = 1 is sufficient in 

In Figures 1, 2, and 3 the probability of detection (Pd) is plotted versus the Signal to 

in faP
0, ωtg = 0.01, and Nc = 1000 independent an
Clutter-to-Noise Ratio (CNR) is defined as 

 
it

order for the KB-GLRT to achieve convergence.   
 
 
Interference plus Noise Power Ratio (SINR) for β = 1 and several values of K.  SINR is given 
by: 
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Ip'sr1 if        f1, *"l                T/"-.11 T>"V (39) 
(l + irt^r)pt^p< 

j       Keiiy-KX, 

and 
Wsr1 r\2 %} 
P*S8 P    <o 

(40) 

where 
1   Ä 

A
 fc=i 

57Ari?=|a|V-R"1P, 



 

where |⋅| denotes the absolute value of a complex number.  The results show that the KB-GLRT 
outperforms the KB-2S-GLRT.  Both new detectors exhibit a Pd level higher than Kelly’s 
receiver and the AMF.  Moreover, the performance gain depends on the size of the available 

In this section we highlight the analytical complications which were raised in the derivation 
 

 the clutter covariance 
atrix can be approxim

 matrix still admits the representation in (20), but Proposition 

sample support.  The smaller K is the higher the gain.  Finally, for the parameter values chosen, 
the loss of the new receivers with respect to the optimum processor is acceptable even for small 
sample supports, and the loss decreases as K increases. 
 
 In Figure 4 the effect of Doppler ambiguous clutter is analyzed.  We assume β = 2, K = 3-, 
and the same target parameters of the previous three figures.  The curves show that even in the 
presence of an aliased clutter ridge the novel receivers outperform Kelly’s detector and the AMF, 
especially for values of Pd in the low-medium range. 
 

7. Analytical Problems Connected with the Case of a Non-
Integer β and a Possible Approximate Solution 
 
 
of the GLRT with reference to the case of a non-integer value of the parameter β, and we
propose two approximate decision strategies. 
 

To this end we observe that according to the Brennan rule the rank of 
m ated as [1] 

 
Where r = round ((N – 1) β + L), and round (⋅) indicates rounding to the nearest integer.  As a 
consequence the clutter covariance
1 does not hold true.  Otherwise stated, the values θ 1, …,θ r 

θ = 
cannot be arbitrarily chosen and the 

matrix A must be considered a function of the vector [ ( )θ 1, …, ( )θ r], i.e. A = A(θ).  It 
llows that the parameter sets under the H0 and H1 hypothesis are 

ates of the parameters 

fo

 
In order to evaluate the GLRT it is necessary to calculate the ML estim
under both hypotheses.  Thus we first focus on the H1 hypothesis and consider the problem 

 
Maximizing over α, for fixed R, yields 
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rank(i?c) = min (r, iVc) , 

Oo={0,S,<72},      5>0  ö€[o,ir 

e1 = {a,e,sio
2}1 s>o 0e[o,i[r 

mgc   /( r, n,..., r^la, 0} 5, a2, fii). 

ptß-!p *(».*>-££=£• 



 

Moreover, maximizing over S ≥ 0 and σ2 for fixed α and θ we get 

fixed 
define a stationary point: 

 

 

 

ple covariance matrix.  We explicitly point out 

 receiver, the Kelly receiver, and the AMF for Pfa = 10 , 
 =

e perfect measurement bound is about 4 db (if β = 0.9) or 5 dB (if β = 

.  Based on this knowledge the processor first selects the actual environment (and as a 
consequence the specific clutter subspace) and then evaluates the decision statistics for testing 
the target presence. 

Finally, differentiating ƒ(r, r1, …, rK⎜α, θ, S, σ2, H1) with respect to the components of θ, for 
α, S, and σ2, we come up with the following set of non-linear equations which implicitly 

and ei is the NL column vector with all zero components but for the i-th which is equal to 1. 
The joint ML estimates of the parameters must satisfy jointly (46), (47), and (48).  This is an 

apparently mathematical intractable problem.  Similar considerations can also be done with 
reference to the maximization problem under the H0 hypothesis as well as to the derivation of the 
KB-2S-GLRT for the case of a non-integer beta. 

In order to circumvent this drawback we notice that the GLRT strategy (and the two-step 
GLRT technique) can be still applied in an approximate fashion if we assume that an estimate of 
A is available.  To this end a very simple estimate which could be adopted is represented by the 
dominant eigenvectors of the secondary data sam
that this solution does not sensibly increase the computational burden connected with the 
evaluation of the decision rule since the eigenvalue decomposition of the aforementioned matrix 
must be evaluated as required by (35). 
 The receivers which exploit the quoted approximation will be referred to, in the sequel, as the 
Approximate KB-GLRT (AKB-GLRT) and the approximate KB-2S-GLRT (AKB-2S-GLRT).  
Their detection performance (evaluated by Monte Carlo simulation) is analyzed in Figures 5 and 
6 also in comparison with the optimum -2

L  4, N = 6, K = 3-, θtg = 0, ωtg = 0.01, and Nc = 1000 independent and identically distributed 
clutter patches.  Figure 5 refers to β = 0.9 whereas Figure 6 assumes β = 1.1.  Finally we assume 
Nit = 1, and CNR = 30 dB. 
 The curves show that in both situations the AKB-GLRT and the AKB-2S-GLRT outperform 
the Kelly receiver and the AMF.  In particular, for Pd = 0.9, the performance gain is kept within 
5 dB for both β = 0.9 and β = 1.1.  Finally, always for Pd = 0.9, the loss of the knowledge-based 
receivers with respect to th
1.1). 
 Notice that a different technique to cope with the uncertainty about the clutter subspace 
might be the employment of further a-priori information.  This is tantamount to assuming the 
existence of a database containing the structure of the covariance subspace for several different β 
values

11 

R(a,9) = Proc(Ti(a)). 

tr { [(A(O)SAHe) + a-/)"1 (^f SA* (*) + ^«)] x 
(48) 

[(^(0)5^(0) + a2/)"1 Tx(a) - j]} = 0       i = 1,...,r, 

where 

ddi   ~   dOi  &i ' 
(49) 



 

8. Conclusions 
 
 In this paper we have proposed and assessed knowledge-based detectors for STAP 
applications.  Exploiting the special structure of the clutter ridge we have derived a relevant 
property of the clutter space-time covariance matrix.  We have shown that for integer values of 
the slope parameter the clutter covariance subspace is perfectly known.  Thus we have devised 

LRT which exploit the aforementioned property.  We have also 
 of clutter ridge with non-integer slope and have shown that the 

roblem is very difficult from an analytical point of view since it involves the solution of 

the KB-GLRT and the KB-2S-G
addressed the most general case
p
multivariate non-linear equations.  Approximate GLRT detectors have been thus proposed and 
hints for their implementation with a supporting environmental database have been provided. 
 The performance analysis has shown that the new knowledge-based systems achieve a 
performance level very close to the optimum detector which assumes perfect knowledge of the 
clutter covariance matrix.  Finally, the new receivers can also outperform some previously 
proposed adaptive detection schemes such as the Kelly receiver and the AMF. 
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Appendix A: RML = Proc (T) 
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9    Appendix A: RML =Proc(T) 

-tr\( AS A*+ a2iylT]]K+1 
L(S,o2)^\ 1—  —Lv— n-.x;    .j 

1   '     ;      \<KVdet{ASAt + a2I) j K    J 

where T is a positive definite matrix. Then the ML estimator of R — ASA* + <72 J, with 

the constraint S > 0, can be evaluated according to the following procedure (Proc(T)). 

1. Compute the Cholesky factor L of A* A. 

2. Form the r x r matrix X = £_1A.tT,AZ~''' and compute its eigendecomposition 

X = G&G\ where $ = diag(^)1,..., (£r), and <j>\ > .,. > 0r. 

3. Evaluate 7 - tr(P-LT) where P^ - I - AfA^A)"1^. 

5- Evaluate a2 = —^ (7 
NL-k \ 

6. Verify if3 <^    < a2 < <fa. Yes: go to Step 9. 

k = k-l. 

m                        8. Go to Step 5. 

9. Set ?ML = Ä 

10. Define  A —diag(Ai,.. ,, Xr) where 

Ai = [<k- a2   i — l,...:k 
i = jb + l,,M,r 

11. SML = L^G AG^L1 

12. RML = ASM£Af + a*} 41,1. 

We explicitly point out that the above procedure simplifies if the matrix 

A1 = = #- 1       7>0. (51) 

In fact, under this last assumption, SML = X_tG A^L1 and RML = ASML- A* + 
o2

MLI. 

3Use the definitions <i>o = +00 and d>r+i = 0 



 

 

 

Figure 1:  Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 1, K = 24, Nit = 1, and CNR = 30 dB.  
Optimum receiver (solid curve), KB-GLRT (dotted curve), KB-2S-GLRT (dashed curve), Kelly receiver 
(plus-marked curve), and AMF (star-marked curve). 
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Figure 2:  Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 1, K = 48, Nit = 1, and CNR = 30 dB.  
Optimum receiver (solid curve), KB-GLRT (dotted curve), KB-2S-GLRT (dashed curve), Kelly receiver 
(plus-marked curve), and AMF (star-marked curve). 
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Figure 3:  Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 1, K = 120, Nit = 1, and CNR = 30 
dB.  Optimum receiver (solid curve), KB-GLRT (dotted curve), KB-2S-GLRT (dashed curve), Kelly receiver 
(plus-marked curve), and AMF (star-marked curve). 
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Figure 4:  Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 2, K = 30, Nit = 1, and CNR = 30 dB.  
Optimum receiver (solid curve), KB-GLRT (dotted curve), KB-2S-GLRT (dashed curve), Kelly receiver 
(plus-marked curve), and AMF (star-marked curve). 
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Figure 5:  Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 0.9, K = 30, Nit = 1, and CNR = 30 
dB.  Optimum receiver (solid curve), AKB-GLRT (dotted curve), AKB-2S-GLRT (dashed curve), Kelly 
receiver (plus-marked curve), and AMF (star-marked curve).
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Figure 6: Pd versus SINR for Pfa = 10-2, L = 4, N = 6, θtg = 0, ωtg = 0.01, β = 1.1, K = 30, Nit = 1, and CNR = 30 
dB.  Optimum receiver (solid curve), AKB-GLRT (dotted curve), AKB-2S-GLRT (dashed curve), Kelly 
receiver (plus-marked curve), and AMF (star-marked curve). 
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